
J
H
E
P
0
4
(
2
0
0
8
)
0
3
4

Published by Institute of Physics Publishing for SISSA

Received: February 21, 2008

Revised: March 20, 2008

Accepted: April 2, 2008

Published: April 10, 2008

On measuring the masses of pair-produced

semi-invisibly decaying particles at hadron colliders

Daniel R. Tovey

Department of Physics and Astronomy, University of Sheffield,

Hounsfield Road, Sheffield S3 7RH, U.K.

E-mail: daniel.tovey@cern.ch

Abstract: A straightforward new technique is introduced which enables measurement at

hadron colliders of an analytical combination of the masses of pair-produced semi-invisibly

decaying particles and their invisible decay products. The new technique makes use of the

invariance under contra-linear Lorentz boosts of a simple combination of the transverse

momentum components of the aggregate visible products of each decay chain. In the

general case where the invariant masses of the visible decay products are non-zero it is

shown that in principle the masses of both the initial particles from the hard scattering and

the invisible particles produced in the decay chains can be determined independently. This

application is likely to be difficult to realise in practice however due to the contamination

of the final state with ISR jets. The technique may be of most use for measurements of

SUSY particle masses at the LHC, however the technique should be applicable to any class

of hadron collider events in which heavy particles of unknown mass are pair-produced and

decay to semi-invisible final states.
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1. Introduction

In R-Parity conserving SUSY events at hadron colliders SUSY particles (‘sparticles’) must

be pair-produced and undergo cascade decay to the Lightest Supersymmetric Particle

(LSP), which is often invisible and hence a dark matter candidate. The presence of two

such invisible particles in the final state, together with imperfect detector hermeticity close

to the beam-pipe and an uncertain parton centre-of-mass energy, prevents the use of con-

ventional invariant mass or transverse mass techniques for sparticle mass measurement.

Similar challenges are faced when attempting to measure the mass of any pair-produced

particles with visible and invisible decay products.

Several approaches to this general problem have been documented, usually in the con-

text of measuring SUSY particle masses. Given a sufficiently long decay chain constraints

on analytical combinations of sparticle masses can be obtained from the positions of end-

points in distributions of invariant masses of combinations of visible SUSY decay products

(jets, leptons etc.) [1]. Given a number of such constraints, the system of equations may

be solved with a numerical fit to obtain the individual masses [1 – 3]. It was recently shown

that the mass precision obtained from this technique can be improved by subsequently per-

forming combined fits to individual events, imposing both experiment end-point constraints

and event Emiss
T constraints [4].

When the number of kinematic end-point constraints provided by a given decay chain

is insufficient to fully constrain individual sparticle masses alternative techniques must be

employed. One possible approach involves solving simultaneously the mass-shell conditions

obtained from several events containing the same decay chain [5]. This mass-relation

method exploits the small widths of SUSY states, allowing the mass of each state appearing

in the considered events to be assumed to be constant.
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A second approach to this problem is to select events in which the same decay chain

appears in both ‘legs’ of each selected event. In this case additional constraints are pro-

vided by the components of the event ET
miss vector,1 and again use can be made of the

sparticle narrow-width approximation to equate the masses in the two legs. This permits

the construction of further distributions with kinematic end-points related to the masses

of sparticles present in the event.

One example of a technique of this kind is the stransverse mass method [6, 2, 7]. Con-

sider two identical heavy SUSY states δ1 and δ2, decaying respectively to visible products

v1 and v2 and identical lighter states α1 and α2. If pT(α1), the transverse momentum

vector of α1, were known then it would be possible to calculate mT (δ1), the transverse

mass of δ1, which is bounded from above by m(δ). If pT(α1) is known however then so is

pT(α2) through application of the event ET
miss constraints. Therefore mT (δ2) could also

be calculated, a quantity which must also be less than m(δ). Consequently the maximum

value of mT (δ1) and mT (δ2) provides a variable with an end-point whose position measures

m(δ). Of course in reality we are not able to measure pT(α1) or pT(α2) however the great

insight of ref. [6] was the realisation that if we can find a test value pT(α1) which minimises

this maximum transverse mass, we can be sure that the minimised-maximised transverse

mass is also bounded from above by m(δ). This ‘minimax’ transverse mass quantity is

referred to as the ‘stransverse mass’ or MT2.

The development of the stransverse mass technique was particularly important because

for the first time it allowed the measurement of masses of sparticles decaying through very

short cascades, for instance q̃R → qχ̃0
1 or l̃ → lχ̃0

1. Furthermore an analytical expression

for MT2 has recently been derived, valid in cases where the centre-of-mass (CoM) frame

is at rest in the laboratory transverse plane [8], thus simplifying its use considerably. The

technique inherits one draw-back from its use of the transverse masses of δ decay products

however, namely that it requires the use of m(α) as an input. MT2 may therefore be

described more correctly as an ensemble of variables, one for each assumed value for the

unknown quantity m(α). The dependence of MT2 on m(α) has been determined to be

approximately m(δ) −m(α) in specific cases [7], however it would in general be preferable

if the definition of the variable were independent of the unknown quantities to be measured.

In that case the mass constraints obtained from an end-point fit would be uncorrelated with

other measurements and hence could be used as input to a global mass fit.

In this paper we will propose a very simple technique which seeks to address the

same problem as the stransverse mass technique, but which approaches the problem from

a different perspective. The new technique will allow a simple analytical combination of

particle/sparticle masses to be constrained in a precise and model-independent manner.

Furthermore the technique will offer at least in principle the prospect of measuring indi-

vidual particle masses, as postulated for the stransverse mass technique in refs. [9 – 12].

The new technique will be applicable to any class of events in which heavy particles of

unknown mass are pair-produced and decay to semi-invisible final states.

1We denote three-vector and two-vector quantities with bold case, while the corresponding magnitudes

are denoted with standard case. Four-vector quantities are written in standard case.
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The structure of the paper is as follows. Section 2 will describe the principles underlying

the technique and investigate the properties of the new variable upon which it is based.

Section 3 will illustrate application of the technique to the problem of constraining sparticle

mass combinations with q̃R → qχ̃0
1 pair events at the LHC. Section 4 will outline extension

of the technique to measurement of individual particle masses. Section 5 will conclude and

discuss avenues for future work.

2. Description of technique

2.1 Background

Consider ‘symmetric’ events in which identical cascade decay chains of the form

δ → αv (2.1)

occur in each leg i of the event. We shall refer to the initial particles produced in the hard

scattering as δi. We shall further consider n step decay chains in each leg consisting of

n − 1 decays, such that the (n − 1)th decays produce invisible particles αi. The visible

products of decays 1 to (n − 1) in each leg will be considered as single systems vi of mass

m(vi) and four-momentum p(vi). We shall assume that no invisible particles other than α

are produced in the decay chains. The particles δi and αi have common masses which are

respectively m(δ) and m(α).

This parameterisation of the decay chains is quite general. The case n = 2 corresponds

to SUSY chains such as q̃R → qχ̃0
1 or l̃ → lχ̃0

1, with α identified as the LSP χ̃0
1. In these

cases m2(vi) ≪ p2(vi) at the LHC. For longer SUSY chains we can choose the number of

decays provided we can unambiguously identify the visible products of those decays. If n is

equal to the total number of sparticles in the chain then α is again the LSP. For chains with

n > 2 steps the distributions of invariant masses m(vi) can display kinematic end-points

sensitive to analytical combinations of sparticle masses appearing in the chain [1]. This

information is used to constrain the individual masses in the end-point method but will be

incidental to the technique described here.

Consider now the use of N symmetric events of the general form of eq. 2.1 to mea-

sure m(δ) and m(α). This problem reduces to one of solving 6N non-linear simultaneous

equations, with each event providing the mass-shell conditions:

[p(v1) + p(α1)]
2 = [p(v2) + p(α2)]

2 = m2(δ),

[p(α1)]
2 = [p(α2)]

2 = m2(α), (2.2)

together with two ET
miss constraints:

px(α1) + px(α2) = Emiss
x ,

py(α1) + py(α2) = Emiss
y . (2.3)

Each event contributes 2 unknown masses, which are common to all events, and 8 unknown

αi four-momentum components, which differ between events. The total number of unknown
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parameters is therefore 8N + 2 while the number of constraints is 6N and so the system

of equations is highly under-constrained.

It may seem surprising at first that the above system of equations can be solved at all,

however it should be noticed that we are not concerned with measuring the four-momenta

p(α1) and p(α2) for all events, but rather with measuring only the common masses m(δ)

and m(α) using at least one event. Consequently we may set out to discard events in

which the unknown masses depend on unknown four-momentum components. The problem

therefore reduces to one of finding variables dependent only on the measurable quantities

p(v1), p(v2) and ET
miss which identify events where the masses also depend only on those

measurable quantities. This general approach is effectively that taken by kinematic end-

point techniques, in which the variables identifying the events, such as m(ll) or MT2, are

also those which provide the mass measurment. This is also the approach which shall be

taken here.

2.2 Transverse momentum end-points

One possible starting point for this problem was outlined in ref. [13]. In an effective two-

body decay process of the type considered above the magnitude of the three-momentum

of the visible decay products in the rest frame of δi is given by

|p(vi)| =
1

2

√

[m2(δ) −m2(α) +m2(vi)]2 − [2m(δ)m(vi)]2

m(δ)

≡ 1

2
Mi, (2.4)

which defines the 2-body mass parameter Mi. It will also be useful for the discussion

which follows to define the equivalent quantity M0 for the special case where m(vi) = 0:

M0 ≡ m2(δ) −m2(α)

m(δ)
. (2.5)

If δi has a small boost in the laboratory transverse frame, then the laboratory transverse

momentum of vi is of order Mi/2. This dependence of the momenta of visible decay

products on the masses of heavy particles further up the decay chain is the reason that

variables such as the ‘effective mass’ [1] used in SUSY studies are sensitive to such masses.

In principle we can improve on the use of ad hoc variables such as the effective mass

however. In the rest frame of δi the magnitude of the momentum of vi transverse to the

beam direction,2 pT (vi), is bounded from above by Mi/2 because

pT (vi) =
Mi

2
sinψi, (2.6)

where ψi is the polar decay angle relative to the beam direction. Consequently if we could

measure pT (vi) we could constrain the masses.

Unfortunately however we are not able to measure pT (vi) directly — instead we mea-

sure the equivalent quantity in the laboratory frame: p′T (vi). To proceed further we assume

2We denote quantities measured in the δ1δ2 CoM frame with primed variables and those measured in

the rest frames of δ1 or δ2 with unprimed variables.
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that the δ1δ2 CoM frame is at rest in the laboratory transverse plane. This condition can

be enforced by selecting events in which the net transverse momentum of the final state

excluding the δ1 and δ2 decay products is small. In this case p′T (vi) is related to pT (vi) by

a proper Lorentz transformation in the transverse plane through the well-known relation:

p′2T (vi) =
1

1 − β2
[pT (vi) cosφi ± βE(vi)]

2 + p2
T (vi) sin2 φi, (2.7)

where β is the transverse boost factor (0 < β < 1), E(vi) is the energy of vi and φi is the

angle in the rest frame of δi between the boost direction and pT(vi). For given vi we know

neither β nor φi and hence we are not able to reconstruct pT (vi). Nevertheless we do know

from conservation of momentum that in the δ1δ2 CoM frame, and hence the laboratory

transverse plane, the boost applied to v2 is equal and opposite to that applied to v1.

To proceed further we shall attempt to find a quantity which can be calculated from

the components of pT(v1) and pT(v2) which remains unchanged if calculated with the

corresponding components of p′

T
(v1) and p′

T
(v2). If we could find such a quantity then we

could use it to relate momenta measured in the δ1δ2 CoM frame to those measured in the

δ1 and δ2 rest frames and hence constrain Mi.

2.3 Cotransverse mass and contransverse mass

Consider first a system containing two particles v1 and v2 with masses m(v1) and m(v2)

measured in some frame F(0) to have four-momenta p(v1) and p(v2). If both these particles

are now measured in a different frame F(1) it is well known that the mass obtained from

p(v1) + p(v2) remains unchanged, i.e. the quantity

m2(v1, v2) = [E(v1) + E(v2)]
2 − [p(v1) + p(v2)]

2

= m2(v1) +m2(v2) + 2[E(v1)E(v2) − p(v1) · p(v2)] (2.8)

is invariant. Another way to interpret this is that when particles v1 and v2 are subjected

to co-linear boosts of equal magnitude m2(v1, v2) is invariant.

Now let us examine what happens when we start from one frame F(0), but boost

particles v1 and v2 to different frames F(1) and F(2) respectively. These new frames are

distinguished by the fact that their boosts are of equal magnitude but opposite direction in

frame F(0). In other words particles v1 and v2 are subjected to contra-linear boosts of equal

magnitude. Clearly m2(v1, v2) is no longer an invariant — this can be seen for instance by

considering p(v1) = −p(v2) in which case E(v1) +E(v2) increases with increasing β while

p(v1) + p(v2) remains zero.

Consider now a new quantity MC equivalent to the invariant mass obtained from

p(v1) + P(p(v2)) where P is the standard parity transformation operator:

M2
C(v1, v2) ≡ [E(v1) + E(v2)]

2 − [p(v1) − p(v2)]
2

= m2(v1) +m2(v2) + 2[E(v1)E(v2) + p(v1) · p(v2)]. (2.9)

This quantity is invariant under the contra-linear boosts considered above. Denoting quan-

tities measured in F(0) with primed variables, and those measured in F(1) and F(2) with
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unprimed variables, and defining the x̂ direction to be the boost direction, this can easily

be demonstrated:

M ′2
C (v1, v2) = [E′(v1) + E′(v2)]

2 − [p′(v1) − p′(v2)]
2

= γ2 [E(v1) + βpx(v1) + E(v2) − βpx(v2)]
2

−γ2 [px(v1) + βE(v1) − px(v2) + βE(v2)]
2

− [py(v1) − py(v2)]
2 − [pz(v1) − pz(v2)]

2

= γ2([E(v1) + E(v2)]
2 + β2[px(v1) − px(v2)]

2

+2β[E(v1) + E(v2)][px(v1) − px(v2)])

−γ2(β2[E(v1) + E(v2)]
2 + [px(v1) − px(v2)]

2

+2β[E(v1) + E(v2)][px(v1) − px(v2)])

− [py(v1) − py(v2)]
2 − [pz(v1) − pz(v2)]

2

= γ2
(

[E(v1) + E(v2)]
2[1 − β2] − [px(v1) − px(v2)]

2[1 − β2]
)

− [py(v1) − py(v2)]
2 − [pz(v1) − pz(v2)]

2

= [E(v1) + E(v2)]
2 − [p(v1) − p(v2)]

2

= M2
C(v1, v2). (2.10)

Since MC(v1, v2) is invariant under contra-linear boosts of equal magnitude its value can

be calculated from the momenta and energies of v1 and v2 in any pair of frames F(1) and

F(2) related to F(0) by such boosts. For instance in the case considered above F(0) could

be identified with the δ1δ2 CoM frame and F(1) and F(2) identified with the rest frames of

δ1 and δ2, in which |p(v1)| = M1/2 and |p(v2)| = M2/2.

From a practical perspective the quantity MC(v1, v2) defined by eq. 2.9 is relevant

only to cases where the δ1δ2 CoM frame is at rest in the laboratory frame, for instance in

collisions at a lepton collider such as LEP or the ILC. At a hadron collider the scenario

is more complicated. As discussed above, co-linear boosts in the laboratory transverse

plane can be limited by selecting events in which the net transverse momentum of the

final state excluding the δ1 and δ2 decay products is small. There remains however a

potentially large co-linear boost in the beam (ẑ) direction caused by the differing proton

momentum fractions of the colliding partons in the event initial state. MC(v1, v2) is not

invariant under co-linear boosts of v1 and v2 because P does not commute with proper

Lorentz transformations. Consequently we must focus purely on quantities constructed

from momentum components measured in the laboratory plane transverse to the beam

direction.

If v1 and v2 were subjected to co-linear rather than contra-linear equal magnitude

boosts in the laboratory transverse plane then a suitable invariant quantity to consider

would be the transverse mass mT (v1, v2) [14], hereafter refered to as the cotransverse mass.
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mT (v1, v2) is defined by:

m2
T (v1, v2) = [ET (v1) + ET (v2)]

2 − [pT(v1) + pT(v2)]
2

= m2(v1) +m2(v2) + 2[ET (v1)ET (v2) − pT(v1) · pT(v2)], (2.11)

where

ET (vi) =
√

p2
T (vi) +m2(vi). (2.12)

This quantity is useful because it is bounded from above by m(v1, v2). When m(v1) =

m(v2) = 0 the following simplification can be made:

m2
T (v1, v2) = 2pT (v1)pT (v2)(1 − cosφ12), (2.13)

where φ12 is the angle between v1 and v2 in the transverse plane. This illustrates that

events saturating the bound on the (co)transverse mass typically require that v1 and v2 be

back-to-back.

In the case of contra-linear equal magnitude boosts considered above the equivalent

quantity to the (co)transverse mass can be derived from eq. 2.9:

M2
CT(v1, v2) ≡ [ET (v1) + ET (v2)]

2 − [pT(v1) − pT(v2)]
2

= m2(v1) +m2(v2) + 2[ET (v1)ET (v2) + pT(v1) · pT(v2)]. (2.14)

We shall refer to this quantity as the contransverse mass. This has the property that when

m(v1) = m(v2) = 0 it reduces to

M2
CT(v1, v2) = 2pT (v1)pT (v2)(1 + cosφ12), (2.15)

where if pT (v1) and pT (v2) are measured in the laboratory transverse plane then φ12 is the

angle between v1 and v2 in that plane.

It is interesting to note at this point that when v1 and v2 are massless and the δ1δ2 CoM

frame is at rest in the laboratory transverse plane the ET
miss vector can be represented

under a change of basis involving MCT(v1, v2):

ET
miss = {−px(v1) − px(v2),−py(v1) − py(v2)} → {pT (v1) − pT (v2),MCT(v1, v2)}. (2.16)

In the new basis the first component can be interpreted as the contribution to Emiss
T from

pT asymmetry, while the second, containing the geometric mean of pT (v1) and pT (v2), can

be interpreted as the contribution from event topology. In this case Emiss
T is given by:

Emiss
T =

√

[pT (v1) − pT (v2)]2 +M2
CT(v1, v2). (2.17)

The physical interpretation of the contransverse mass is more difficult than in the

(co)transverse case. MCT(v1, v2) does not represent the mass of a particle decaying to

produce v1 and v2. Nevertheless we expect its distribution to display an end-point because

it can in principle be calculated from the momenta of visible decay products measured

in the rest frames of δ1 and δ2, and we know from section 2.2 that these momenta are
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bounded from above by Mi/2. For instance if m(v1) = m(v2) = 0 then MCT(v1, v2) takes

a maximum value of M0, i.e.

Mmax
CT =

m2(δ) −m2(α)

m(δ)
. (2.18)

Interestingly this bound is saturated when v1 and v2 are co-linear, in contrast to the case

for the (co)transverse mass.

To summarise, we have now found a quantity bounded from above by an analytical

combination of particle masses, and which can be calculated using momenta of visible decay

products measured in the laboratory transverse plane. We shall now consider as a use-case

the practical application of this variable to LHC data in order to measure SUSY particle

masses.

3. Example: q̃Rq̃R events at the LHC

To illustrate the application of the contransverse mass end-point technique to LHC data,

a Monte Carlo simulation study was carried out aimed at measuring Mmax
CT for q̃R pair

production events where each q̃R decays to a quark and a χ̃0
1. Squark mass measurement

in this channel using the stransverse mass method was first studied in ref. [15]. The

experimental signature of this process is the presence of events with exactly two jets and

large Emiss
T . In the context of the decay chain discussed in section 2.1 the q̃R plays the role

of δ and χ̃0
1 that of α. We assume that the quark jet decay products are massless and hence

eq. 2.18 allows us to measure an analytical combination of sparticle masses by measuring

Mmax
CT .

A sample of 480k SUSY signal events equivalent to 10 fb−1 of data was generated

from the SPS1a benchmark mSUGRA model [15] with HERWIG 6.5 [16, 17] and passed to

a generic LHC detector simulation [18] modified to impose an 80% efficiency for electron

identification, with mis-identified electrons being added to the list of jets if pT (e) > 10 GeV.

The ISASUGRA 7.69 RGE code [19] was used to calculate the input SUSY mass spectrum,

giving m(q̃R) ∼ 548 GeV and m(χ̃0
1) = 96 GeV and hence Mmax

CT = 531 GeV. A fully

inclusive sample of SUSY events was generated in order to model SUSY backgrounds.

Events were selected with the following requirements (with ji used to denote jet i):

• njet = 2 for ∆R = 0.4 cone jets with pT (j) > 10 GeV and |η| < 5.0,

• nlep = 0 for isolated leptons (electrons or muons) with pT > 5 GeV (electrons) or

pT > 6GeV (electrons), |η| < 2.5, minimum ∆R with nearest jet of 0.4 and maximum

energy deposition of 10 GeV in a ∆R = 0.2 isolation cone,

• min[pT (j1), pT (j2)] > 100 GeV,

• Emiss
T > 200 GeV,

• in order to limit boosts of the q̃Rq̃R CoM frame in the laboratory transverse plane,

measured pT of the j1j2 +Emiss
T CoM frame in the laboratory transverse plane must
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satisfy

√

[px(j1) + px(j2) + Emiss
x ]2 + [py(j1) + py(j2) + Emiss

y ]2 < 20GeV, (3.1)

• MCT > 200 GeV.

The hard pT (j) and Emiss
T cuts additionally ensure that events easily pass typical LHC high

level jet + Emiss
T trigger criteria such as pT (j) > 70 GeV and Emiss

T > 70 GeV [20].

After application of these cuts many Standard Model (SM) backgrounds are heavily

suppressed:

• QCD jet backgrounds, while possessing a very large cross-section, are suppressed by

theMCT cut which rejects events with back-to-back jets. Jet energy mis-measurement

mainly generates Emiss
T through the first term in eq. 2.17 and the effect on MCT

is smaller. In order to pass the MCT cut at least one high pT jet must be com-

pletely missed by the detector. The MCT cut is strongly correlated with the Dππ

variable used at the Tevatron to separate SUSY signal from QCD backgrounds in

multijet+Emiss
T searches [21]. The fast detector simulation used in this study is not

expected to model the catastrophic loss of jets accurately, but we do not expect this

background to be dominant even when using a more realistic simulation. In particu-

lar such events can in principle be removed with ‘event cleaning’ cuts, for instance by

reconstructing jets from charged particle tracks. Consequently QCD jet backgrounds

are not considered further here.

• Hadronic or semi-leptonic tt̄ backgrounds are suppressed by the jet multiplicity cuts,

while fully leptonic events in which both leptons are lost inside the jets (the worst

case scenario kinematically) possess MCT values less than m(t) ∼ 172 GeV, which is

the value expected for top quarks decaying to a neutrino plus massless visible decay

products. Such events therefore fail the MCT cut.

• W +1 jet backgrounds in which the W decays to a hadronic τ or electron faking a jet

can mimic 2-jet events. Events with large MCT typically require two co-linear jets of

similar pT (j). Kinematically such events must possess pT (j) values lying below

pmax
T (j) = γβm(W ) =

1

2
m(W )γ(1 − β), (3.2)

where β is the boost of the W in the transverse plane. This equation can be solved

to yield pmax
T (j) = m(W )/2

√
2 ∼ 29 GeV and hence Mmax

CT = 2pT (j) = 58 GeV. Such

events therefore also fail the MCT cut and are not considered further here.

The remaining SM backgrounds are dominated by Z(→ νν) + 2 jets and W (→ lν) +

2 jets events, where in the latter case the lepton momentum is anti-parallel to the W

momentum and is ‘red-shifted’ such that its magnitude is below the lepton identification

pT threshold. These backgrounds were modelled with ALPGEN [22] coupled to HERWIG 6.5.

In order to add realism to the analysis the backgrounds were estimated using data-driven
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techniques applied to the Monte Carlo ‘data’. The Z(→ νν) + 2 jets background was

estimated by selecting Z(→ ll) + 2 jets events with similar cuts to those listed above, but

replacing the lepton veto and Emiss
T requirements with a requirement for two opposite-sign

same-flavour leptons with |m(ll) − m(Z)| < 10 GeV and |pT(ll) + ET
miss| > 200 GeV.

The W (→ lν) + 2 jets background was estimated by selecting W (→ lν) + 2 jets events in

which the lepton was boosted and the neutrino de-boosted such that pT (l) > 200 GeV and

Emiss
T < 10 GeV. Each data-driven estimate was normalised separately to the respective

Monte Carlo background pT (j) distribution below the expected SUSY signal region. In

practice the relative normalisation of the W (→ lν) + 2 jets estimate could be obtained

from data, for instance with a fit to the lepton pT spectrum in W (→ lν) + 2 jets events.

SUSY backgrounds to q̃Rq̃R events arise primarily from processes in which at least one

q̃L decays through a chain producing multiple invisible final state particles. One possible

example involves sneutrinos decaying to neutrinos and χ̃0
1. In these cases the mass of each

SUSY state produced in association with the jet in the decay of each q̃L is greater than

that of the χ̃0
1 produced in the decay of q̃R and consequently these events possess Mmax

CT

values below those for q̃Rq̃R. At parton level if SUSY background events are to exceed

the expected end-point, assuming correct assignment of decay products to SUSY decay

chains, then the mass of the initially produced sparticles must be greater than m(q̃R). The

main candidate for this is g̃ pair production in which each gluino decays to co-linear jets in

association with a χ̃0
1. This process should generate a MCT distribution with an endpoint

at Mmax
CT = 597 GeV for a g̃ mass of 612 GeV at SPS1a.

The MCT distribution for events satisfying the selection cuts is shown in figure 1(left)

indicating an excess of events at large MCT values due to SUSY processes. As expected the

contribution from tt̄ events (modeled with HERWIG 6.5) is small, as are the contributions

from WW , WZ, ZZ and single-top production (also modeled with HERWIG 6.5). The

data-points in figure 1(right) represent the same distribution after subtracting the data-

driven background estimate. As expected, a prominent end-point feature is visible at

around 530 GeV. A simple linear fit to the endpoint determines its position to be 550 ±
53 GeV (10% uncertainty). Use of a more sophisticated fitting function would undoubtedly

improve this precision significantly. There is also some evidence in figure 1(right) for a small

excess of events beyond the expected q̃Rq̃R end-point. Examination of the Monte Carlo

truth record indicates that the large MCT values of these events originate either from jet

mis-measurement in q̃Rq̃R events or from both jets originating from the same SUSY decay

chain in non-q̃Rq̃R events. No g̃g̃ events were observed to contribute to this region for this

SPS1a SUSY model.

In order to study the dependence of the shape and position of the MCT end-point in

figure 1 on the cut on the measured pT of the j1j2 + Emiss
T CoM frame (eq. 3.1), the MCT

distributions of SUSY signal events passing progressively harder pT cuts were generated.

Due to the strong correlation between the di-jet multiplicity cut and the pT cut the former

cut was relaxed to require at least two jets, with the two hardest jets being used to calculate

MCT. The resulting distributions are plotted in figure 2 for ten different values of the pT

cut ranging from 200 GeV (top) to 20 GeV (bottom). The effect of the cut on the SUSY

signal is to sharpen the end-point at the expense of statistics. This sharpening of the
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Figure 1: Distributions of MCT values. The left-hand figure shows the cumulative ‘data’ dis-

tributions summing SPS1a SUSY events (light/yellow histogram), Z(→ νν) + 2 jets background

events (medium/green), W (→ lν)+2 jets background events (dark/blue) and diboson, top-pair and

single-top background events (medium-dark/magenta). Data-points indicate the result of the data-

driven estimate described in the text. The data-points in the figure on the right show the result of

subtracting the data-driven estimate from the ‘data’ distribution, with the light/yellow histogram

representing the SUSY distribution with no SM background added. The dark/red histogram shows

the contribution from non-q̃Rq̃R SUSY events. The result of a simple linear end-point fit to the

data-points is shown.

end-point is caused both by limitation of the transverse boost of the q̃Rq̃R CoM frame and

by rejection of high multiplicity non-q̃Rq̃R events in which two jets from the same SUSY

decay chain are selected to calculate MCT. It should also be noted that a harder pT cut

rejects more SM background events, especially QCD multijet events.

4. Extension to measurement of individual particle masses

So far we have shown that we can obtain an end-point in the distribution of a quantity

calculated from visible decay product transverse momenta which depends on an analytical

combination of masses. In principle it is possible to use the position of this end-point to

measure the individual masses m(δ) and m(α). The key to this is recognising that Mi

depends upon both the unknown masses m(δ) and m(α) and the visible masses m(vi). If

one requires that m(v1) = m(v2) = m(v) then it can be shown from eqs. 2.4 and 2.14 that

for given m(v) the bound on MCT is given by:

Mmax
CT =

1

m(δ)
m2(v) + M0. (4.1)

Consequently if events could be found in which m(v1) and m(v2) were non-zero and

equal, for instance by accurately combining products from several decays in a multi-step
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Figure 2: Distributions of MCT values for SUSY signal events for ten different values of the

cut on the measured pT of the j1j2 + Emiss
T

CoM frame (eq. 3.1), ranging from 200GeV (top) to

20GeV (bottom) in 20GeV steps. In contrast to figure 1 the jet multiplicity cut has been relaxed

to require at least two jets and a logarithmic y-axis has been used to aid comparison of shapes of

distributions.

chain, then the position of Mmax
CT would depend linearly on m2(v) with a gradient of

1/m(δ) and intercept the ordinate at M0. The gradient of a linear fit to this bound

therefore measures m(δ) independently of m(α), while the intercept then allows m(α) to

be constrained. As an aside it is interesting to note that in this case MCT is also bounded

from below by:

Mmin
CT = 2

√

m2(v). (4.2)

and for exclusive decay chains m2(v) is bounded from above by a separate analytical

combination of masses identical to that used by the end-point method discussed in section 1.

The above technique should work in principle however it is likely to be very difficult

to implement in practice. The first difficulty is connected with unambiguously associating

decay products with SUSY decay chains. One possible approach would involve focusing

on specific exclusive decay chains, using the values of invariant masses of combinations of

decay products to associate decay products to chains [4]. Unfortunately however the low

acceptance of such exclusive selections is likely to prevent successful application of this

technique before significant quantities of data have been acquired.

A second approach involves inclusive selection of SUSY events with multiple visible

decay products, and use of a kinematic algorithm to approximately associate decay products

to chains. Figure 3(left) shows the result of an attempt at applying this approach to SPS1a
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Figure 3: Distribution in the MCT −m2(v) plane of SPS1a events with ISR turned off (left) and

on (right). The top (straight) line represents the expected dependence from eq. 4.1 of Mmax
CT on

m2(v) for events containing g̃ pair production. The middle (straight) line represents the equivalent

dependence for events containing q̃ pair production. The bottom line represents the expected

dependence of Mmin
CT on m2(v) given by eq. 4.2.

events with ISR turned off. Here decay products have been associated to chains by requiring

that max[m2(v1),m
2(v2)] is minimised. Events have been selected by requiring four jets

and no leptons, and the mass equality requirement mentioned above has been imposed by

requiring that the asymmetry in m2(v1) and m2(v2) is less than 10%. An additional cut

requiring the rapidity difference between v1 and v2 to be greater than 1.0 has also been

applied to reduce combinatorics.

Figure 3(left) shows that with these cuts events generally lie below the expected upper

bounds on MCT for g̃ decays (top line) or q̃ decays (middle line), although some combi-

natorial contamination is visible above the g̃ bound. The lower bound on MCT given by

eq. 4.2 is prominent (bottom line). Figure 3(right), obtained with SPS1a events with ISR

turned on, illustrates the further difficulty of using this approach however. The inclusion of

ISR jets in v1 and/or v2 can artificially lower m2(v) and hence generate false configurations

which strongly violate the upper bounds on MCT. A related effect was noted previously

in connection with the stransverse mass technique in ref. [8]. Clearly much more work is

needed before this technique can be used practically to measure accurately independent

particle masses.

5. Conclusions and directions for future work

This paper has shown that by constructing a kinematic quantity invariant under contra-

linear equal magnitude boosts in the laboratory transverse plane a simple analytical com-
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bination of the masses of pair-produced particles and their invisible decay products can

be constrained at hadron colliders such as the LHC. It was shown that in principle these

techniques may be used to measure the masses of such particles independently, although

in practice this seems to be very difficult.

The study described in this paper suggests several directions for future work. These

include:

• The experimental simulation study of section 3 should be repeated with more realistic

full experiment-specific simulation of all Standard Model and SUSY backgrounds to

demonstrate conclusively the feasibility of these techniques when applied to q̃Rq̃R
events. The feasibility of l̃ mass measurement with l̃l̃ events should also be studied.

• Further work assessing the feasibility of measuring independent particle masses using

the technique outlined in section 4 is required, focusing in particular on optimising

the experimental assignment of decay products to decay chains, and rejection of ISR

jets.
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